Inducible systems for gene therapy medicines

Graham Whyteside,
Principal Scientist
Enabling the development of new gene medicines
Center of Excellence for Gene Regulation

<table>
<thead>
<tr>
<th>Promoters for current products</th>
<th>Promoters for future gene medicines</th>
</tr>
</thead>
<tbody>
<tr>
<td>i Constitutive Expression</td>
<td>ii Regulated Gene Control</td>
</tr>
<tr>
<td>Tissue-selective</td>
<td>Pharmacologically responsive</td>
</tr>
<tr>
<td>Variable strength</td>
<td>Oral Control</td>
</tr>
<tr>
<td>Multi-tissue control</td>
<td>Inducible</td>
</tr>
<tr>
<td>Size to specification</td>
<td>Repressible</td>
</tr>
<tr>
<td></td>
<td>Tissue selective</td>
</tr>
<tr>
<td></td>
<td>Safety switch</td>
</tr>
<tr>
<td></td>
<td>iii Intelligent Design for</td>
</tr>
<tr>
<td></td>
<td>Greater Gene Control</td>
</tr>
<tr>
<td></td>
<td>Pharmacologically responsive</td>
</tr>
<tr>
<td></td>
<td>Oral Control</td>
</tr>
<tr>
<td></td>
<td>Dually regulated</td>
</tr>
<tr>
<td></td>
<td>Multi-gene control</td>
</tr>
<tr>
<td></td>
<td>iv Autoregulatory,</td>
</tr>
<tr>
<td></td>
<td>Environmental Control</td>
</tr>
<tr>
<td></td>
<td>Biologically responsive</td>
</tr>
<tr>
<td></td>
<td>Adaptive Control</td>
</tr>
<tr>
<td></td>
<td>Self-regulated</td>
</tr>
<tr>
<td></td>
<td>Temporally regulated</td>
</tr>
<tr>
<td></td>
<td>Physiologically regulated</td>
</tr>
</tbody>
</table>

Enable the development of new gene medicines

Promoters for current products
- Constitutive Expression
 - Tissue-selective
 - Variable strength
 - Multi-tissue control
 - Size to specification

Promoters for future gene medicines
- Regulated Gene Control
 - Pharmacologically responsive
 - Oral Control
 - Inducible
 - Repressible
 - Tissue selective
 - Safety switch
- Intelligent Design for Greater Gene Control
 - Pharmacologically responsive
 - Oral Control
 - Dually regulated
 - Multi-gene control
 - Pathway control
- Autoregulatory, Environmental Control
 - Biologically responsive
 - Adaptive Control
 - Self-regulated
 - Temporally regulated
 - Physiologically regulated
Tissue specific inducible promoters
POC of design model: Liver specific induction

- Liver specific
- Small molecule inducible
 - GRAS/FDA
- Modularised enhancer
POC of design model: Liver specific induction

Liver specific

Tissue expression level of inducible TF

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Protein</th>
<th>mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>[Liver expression level]</td>
<td>[Liver expression level]</td>
</tr>
<tr>
<td>Kidney</td>
<td>[Kidney expression level]</td>
<td>[Kidney expression level]</td>
</tr>
<tr>
<td>Brain</td>
<td>[Brain expression level]</td>
<td>[Brain expression level]</td>
</tr>
<tr>
<td>Heart</td>
<td>[Heart expression level]</td>
<td>[Heart expression level]</td>
</tr>
<tr>
<td>Spleen</td>
<td>[Spleen expression level]</td>
<td>[Spleen expression level]</td>
</tr>
<tr>
<td>Muscle</td>
<td>[Muscle expression level]</td>
<td>[Muscle expression level]</td>
</tr>
</tbody>
</table>

Small molecule inducible

Modularised Enhancer

Inducer

iTF

Enhancer → TATA-Box → GOI
POC of design model: Liver specific induction

- Identified 4 different enhancers responsive to small molecule
- Tested inducibility of each enhancer
 - Huh7 model
- Different levels of induction for each enhancer
- Dose responsive
- Further tested in primary hepatocytes
POC of design model: Liver specific induction

Enhancer 1 was chosen as our lead candidate
POC of design model: Liver specific induction

- Created combinations of enhancer 1 with different minimal promoters
 - Inducibility
 - Strength
 - Background
- Level of induction and strength dependent on MP
- >5-fold range from single enhancer
POC of design model: Liver specific induction

- Enhancer 1
 - Self-contained 51-bp module
 - Test modularity

![Graph showing luciferase activity](image-url)
POC of design model: Liver specific induction

- Lead candidates
- Robustness of promoter
- Expression of EPO

SYN-PIND-01

SYN-PIND-06

<table>
<thead>
<tr>
<th>Enhancer</th>
<th>MP1-4</th>
</tr>
</thead>
</table>

EPO

Graphs:

1. **[EPO] mIU/mL**
 - SYN-LIND-01:
 - No Drug: []
 - Conc 1: []
 - Conc 2: []
 - Conc 3: []

2. **[EPO] mIU/mL**
 - SYN-LIND-01:
 - No Drug: []
 - SYN-LIND-06:
 - Conc 1: []
 - CMV_IE: []
POC of design model: Liver specific induction

- Are the promoters specific?
 - Tested in HEK293

- Promoters show no activity in HEK293 cells

- Indicates initial analysis of specificity was correct
POC of design model: Liver specific induction

- Lead candidates
- Cloned into AAV vector
- Effect of ITR’s
 - Inducibility and background
POC of design model: Liver specific induction

- Can the promoters be switched off?
- Removal of drug after 24hrs
- Drug removal returns activity to baseline
- Progressed to in vivo POC
POC of design model: Liver specific induction

Specific

12-24hr induction

>45-fold induction

Inducible

SYNP-LIND-01 SYNP-LIND-06 CMV-IE

Luciferase expression (photons/second)

Fold change

Days after injection

Luciferase expression (photons/second)

Days after injection

0 9 24 48

SYNP-LIND-01 SYNP-LIND-06
POC of design model: Liver specific induction

- Enhancer optimisation
 - 3 component parts
 - Optimised each part
 - Improved activity
 - Enhanced in vivo performance?

Novel variants of LIND promoter

<table>
<thead>
<tr>
<th>Variant</th>
<th>No drug</th>
<th>Inducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNP-LIND-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNP-LIND-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNP-LIND-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNP-LIND-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNP-LIND-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNP-LIND-24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview

• Synpromics have developed
 • Pipeline for identifying and constructing tissue specific inducible promoters

• Novel liver-specific inducible promoter
 • Single input system
 • GRAS/FDA approved drug

• Small enhancer
 • 51-bp
 • Increases options for packaging in AAV
 • 4x CMV-IE possible from a 200bp promoter

• Modular and configurable
 • Can be multiplied to increase activity
 • Different strengths/background
 • Modify the enhancer
 • Change MP
 • Dynamic range of 16-fold at fully induced activity
Tissue specific repressible promoters
POC: Liver repressible promoters

• Liver specific
• Small molecule inducible
 • GRAS/FDA
• Modularised repressor
POC: Liver repressible promoters

- Identified a liver specific repressible TF
- Modular component
 - 29bp
- Engineered Synpromics Liver specific promoters to contain module
- Modular component confers repressibility on the promoter
- 1 module is adequate for repression

<table>
<thead>
<tr>
<th>SYNP-OFF-01</th>
<th>SYNP-OFF-02</th>
<th>SYNP-OFF-03</th>
<th>SYNP-OFF-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVR promoter</td>
<td>LVR promoter</td>
<td>LVR promoter</td>
<td>LVR promoter</td>
</tr>
<tr>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
</tr>
<tr>
<td>MP</td>
<td>MP</td>
<td>MP</td>
<td>MP</td>
</tr>
</tbody>
</table>

Base promoter

<table>
<thead>
<tr>
<th>Ratio to CMV-IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
POC: Liver repressible promoters

- Optimised expression
 - Analysis of liver transcriptomics
 - Identified 10 5' UTR designs
 - All <50 bp long
- Improved activity of base promoter SYNP-OFF-03
 - 1 promoter design up to 15 fold CMV-IE
- Promoters will be tested in vivo summer 2019
Overview

• Synpromics have developed
 • Pipeline for identifying and constructing tissue specific repressible promoters

• Novel liver-specific repressible system
 • Single input system
 • GRA/FDA approved drug

• Small module
 • 29-bp
 • Increases options for packaging in AAV
 • Can be added to existing promoters to add repressibility

• Discovered Liver 5’ UTRs
 • Small <50bp
 • Can increase dynamic range of promoter (3-fold)
 • Do not interfere with repression
Synpromics
Controlled gene expression in the liver: design of constitutive, inducible and repressible promoters for use in gene medicine
Metabolic, Storage, Endocrine, Liver and Gastrointestinal Diseases II | 798 | Wednesday 1st May, 5 – 6pm

UCL
Development of Novel Promoters for Neurological Gene Therapy
Neurologic Diseases II | 558 | Tuesday 30th April, 5 – 6pm

Solid Biosciences
Identification of Novel Muscle-Specific Promoters for AAV Gene Expression in Skeletal and Cardiac Muscles
Musculo-skeletal Diseases | 822 | Wednesday 1st May, 5 – 6pm

uniQure Biopharma B.V.
Towards AAV5-Mediated Gene Therapy for Hemophilia A with a Factor IX Variant that Functions Independently of FVIII
AAV Vectors and Disease Targets II | 959 | Thursday 2nd May, 11:45am – 12pm

uniQure Biopharma B.V.
Development of an AAV5-Based Gene Therapy for Fabry Disease
AAV Vectors and Disease Targets II | 960 | Thursday 2nd May, 12pm – 12:15pm
Contact Us

If you would like to know more about Synpromics and gene control technology, please get in touch!

info@synpromics.com
www.synpromics.com

Roslin Innovation Centre
Easter Bush Campus
Midlothian, EH25 9RG
Design and layout guidelines

Colours

- #00ADEE
- #F8931F
- #00AD
- #EA222D
- #73BA09
- #9F005C

Fonts

- **Titles** = *Calibri Light (Headings)* 24pt
- **Body** = *Calibri (Body)* 12pt | This can be varied depending on the layout

Tips

- When pasting, paste as plain text, this will help automatically adjust the text with the template

Tabs

- Copy and paste the selected tab onto the slide, they will automatically paste into the correct location